Valerius Streleț

Multi tool use

Valerius Streleț
Res apud Vicidata repertae:
Nativitas:
8 Martii 1970;
ȚareucaPatria:
Moldavia
Officium
Officium: member of the Parliament of Moldova, Prime Minister of Moldova
Munus: Politicus, Oeconomus
Consociatio
Factio: Liberal Democratic Party of Moldova
Religio: Orthodox Christianity
Memoria
Laurae: Order of the Republic
Valerius, vulgo Valeriu Streleț (natus Țareuca in oppido die 8 Martii 1970) est politicus Moldaviae et a die 30 Iulii 2015 usque ad 30 Octobris eiusdem anni primus minister patriae, successor Cyrillo Gaburici, qui die 22 Iunii eiusdem anni demissionem suam petiverat, et Nataliae Gherman, quae idem officium ad interim impleverat.
Valerius Streleț alumnus est Universitatis Civicae Moldavicae, ubi annos 1987–1993 historiae studuit, et Academiae Studiorum Oeconomicorum, ubi annos 2002–2005 facultatem oeconomiae generalis et iuris frequentabat.
Nexus externi |
Vita apud Parlamentum Moldavicum
Primi ministri rei publicae Moldaviae
|
|
Valerius Muravschi 1991 • Andreas Sangheli 1992 • Ioannes Ciubuc 1997 • Seraphinus Urechean 1999 • Ioannes Sturza 1999 • Demetrius Braghiș 1999 • Basilius Tarlev 2001 • Zinaida Greceanîi 2008 • Vitalis Pîrlog 2009 • Vladimirus Filat 2009 • Iurie Leancă 2013 • Cyrillus Gaburici 2015 • Natalia Gherman 2015 • Valerius Streleț 2015 • Georgius Brega 2015 • Paulus Filip 2016Opus geopoliticum • Gubernatores civitatum Europaearum hodiernarum
Capsae cognatae: Praesides Moldaviae • Ministri rerum externarum Moldavici
|
|
Ministri rectionis Moldavicae Valerii Streleț 2015
|
|
Anatolius Arapu • Monica Babuc • Oleg Balan • Basilius Bîtca • Basilius Botnari • Georgius Brega • Stephanus Christophorus Bridé • Mircea Buga • Vladimirus Cebotari • Georgius Chirinciuc • Paulus Filip • Corinna Fusu • Natalia Gherman • Ruxanda Glavan • Loretta Handrabura • Valerius Munteanu • Victor Osipov • Anatolius Șalaru • Valerius Streleț • Ioannes SulaOpus geopoliticum • Consilia ministrorum civitatum Europaearum hodiernarum
Capsae cognatae: Consilia Leancă 2013–2015 • Gaburici 2015 • Streleț 2015 • Filip 2016–
|
|
34Gu0C 9h,eqAYDZyoh ailG XWYFYt6JOYMi,nGlnXWliSf77c,mLiWk
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...