ML: Model tuning suggestions please -












-2












$begingroup$


Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?



models = 
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))

for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)


Output -



LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)


Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100) -



Accuracy Score (using CART)=> 0.586663673102829


Ideas please?










share|improve this question









$endgroup$












  • $begingroup$
    Focus on features first and modelling secondly
    $endgroup$
    – Aditya
    4 hours ago
















-2












$begingroup$


Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?



models = 
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))

for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)


Output -



LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)


Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100) -



Accuracy Score (using CART)=> 0.586663673102829


Ideas please?










share|improve this question









$endgroup$












  • $begingroup$
    Focus on features first and modelling secondly
    $endgroup$
    – Aditya
    4 hours ago














-2












-2








-2





$begingroup$


Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?



models = 
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))

for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)


Output -



LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)


Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100) -



Accuracy Score (using CART)=> 0.586663673102829


Ideas please?










share|improve this question









$endgroup$




Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?



models = 
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))

for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)


Output -



LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)


Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100) -



Accuracy Score (using CART)=> 0.586663673102829


Ideas please?







machine-learning classification scikit-learn pandas hyperparameter-tuning






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 5 hours ago









ranit.branit.b

165




165












  • $begingroup$
    Focus on features first and modelling secondly
    $endgroup$
    – Aditya
    4 hours ago


















  • $begingroup$
    Focus on features first and modelling secondly
    $endgroup$
    – Aditya
    4 hours ago
















$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago




$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45111%2fml-model-tuning-suggestions-please%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45111%2fml-model-tuning-suggestions-please%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)