ML: Model tuning suggestions please -
$begingroup$
Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?
models =
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
Output -
LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)
Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100)
-
Accuracy Score (using CART)=> 0.586663673102829
Ideas please?
machine-learning classification scikit-learn pandas hyperparameter-tuning
$endgroup$
add a comment |
$begingroup$
Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?
models =
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
Output -
LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)
Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100)
-
Accuracy Score (using CART)=> 0.586663673102829
Ideas please?
machine-learning classification scikit-learn pandas hyperparameter-tuning
$endgroup$
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago
add a comment |
$begingroup$
Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?
models =
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
Output -
LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)
Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100)
-
Accuracy Score (using CART)=> 0.586663673102829
Ideas please?
machine-learning classification scikit-learn pandas hyperparameter-tuning
$endgroup$
Why am I getting so low scores, even though I've removed the blank and NaN values from my data set?
models =
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
Output -
LDA: 0.341045 (0.012459)
KNN: 0.539492 (0.023726)
CART: 0.587322 (0.012348)
NB: 0.335151 (0.019190)
SVM: 0.589792 (0.011770)
Also, my accuracy score is quite low, using the Decision Tree Classifier with default hyperparameters cart = DecisionTreeClassifier(random_state=100)
-
Accuracy Score (using CART)=> 0.586663673102829
Ideas please?
machine-learning classification scikit-learn pandas hyperparameter-tuning
machine-learning classification scikit-learn pandas hyperparameter-tuning
asked 5 hours ago
ranit.branit.b
165
165
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago
add a comment |
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45111%2fml-model-tuning-suggestions-please%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45111%2fml-model-tuning-suggestions-please%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Focus on features first and modelling secondly
$endgroup$
– Aditya
4 hours ago