Gallia Cisalpina

Multi tool use

Oppida et gentes Galliae Cisalpinae
Gallia cisalpina erat ab anno 203 a.C.n. ad 41 a.C.n. provincia imperii Romani, in septemtrionalis parte Italiae hodiernae sita.
Antiquam secundum cogitationem erat pars Galliae, haud Italiae et ab Roma Secundo Bello Punico in Hannibalem expugnabatur. 49 a.C.n. anno oppida Galliae cisalpinae civitatem Romanam accipebant et ab anno 41 a.C.n. omnis ducebatur regio partem Italiae, haud iam Galliae. Pristina provincia dividebatur in regiones:
Aemilia sive Gallia Cispadana
- Liguria
- Venetia et Histria
- Gallia Transpadana
Bibliographia |
Tenney Frank, Roman Imperialism. Novi Eboraci: Macmillan, 1914 Textus apud archive.org
- Tenney Frank, ed., An Economic Survey of Ancient Rome. 6 voll. Baltimorae: Johns Hopkins University Press, 1933-1940
Provinciae Imperii Romani ante-Diocletianae
|
|
Achaia • Aegyptus • Africa • Alpes Cottiae • Alpes Graiae • Alpes Maritimae • Alpes Poeninae • Aquitania • Arabia Petraea • Armenia • Asia • Assyria • Baetica • Bithynia et Pontus • Britannia; inferior, superior • Cilicia • Corsica et Sardinia • Creta et Cyrene • Cyprus • Dacia; inferior, superior, Porolissensis; Tres Daciae • Dacia Aureliana • Dalmatia • Epirus • Galatia • Gallia Belgica • Gallia Cisalpina • Gallia Lugdunensis • Gallia Narbonensis • Germania Inferior • Germania Superior • Hispania Tarraconensis • Iudaea • Lusitania • Lycia et Pamphylia • Macedonia • Mauritania Caesariensis • Mauritania Tingitana • Mesopotamia • Moesia; Inferior, Superior • Noricum • Numidia • Pannonia; Inferior, Superior • Raetia • Sicilia • Syria; Coele, Phoenice • ThraciaIndex provinciarum Rei Publicae Romanae • Index provinciarum Romanarum Imperii • Index provinciarum Romanarum Diocletianarum Tabula successionis provinciarum Romanarum
|
|
LXlHXg F,m,o Q7OWFU25eYCCUHM6dFSXOEI6sFoX8V,rkmiuE6Md3fa2nRUyVB hEhbWbCH lWfKTLGJu9,wEG lOCK2NQKZ,Fy kk
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...