Calculating an infinite sum: $sumlimits_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$ [on hold]
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
put on hold as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL 11 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
put on hold as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL 11 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
calculus sequences-and-series power-series
New contributor
New contributor
edited 13 hours ago
Martin Sleziak
44.7k9117272
44.7k9117272
New contributor
asked 14 hours ago
Laina YabLaina Yab
205
205
New contributor
New contributor
put on hold as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL 11 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
put on hold as off-topic by Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL 11 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Simply Beautiful Art, José Carlos Santos, Holo, Did, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
answered 14 hours ago
trancelocationtrancelocation
9,8101722
9,8101722
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
add a comment |
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
1
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
13 hours ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
$endgroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$iff n^2-n=n^2+n(3+A)+2A+B+2$
$3+A=-1iff A=-4,2A+B+2=0iff B=-2-2A=-2-2(-4)=6$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$$dfrac{x^{n-1}n(n-1)}{(n+2)!}$$
$$=x^{n-1}cdotdfrac{ (n+2)(n+1)-4(n+2)+6}{(n+2)!} =dfrac1xcdotdfrac{x^n}{n!}-dfrac4{x^2}cdotdfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}cdotdfrac{x^{n+2}}{(n+2)!}$$
$$impliessum_{n=1}^inftydfrac{x^{n-1}n(n-1)}{(n+2)!}=dfrac1xsum_{n=1}^inftydfrac{x^n}{n!}-dfrac4{x^2}sum_{n=1}^inftydfrac{x^{n+1}}{(n+1)!}+dfrac6{x^3}sum_{n=1}^inftydfrac{x^{n+2}}{(n+2)!}$$
$$=dfrac1xleft(e^x-1right)-dfrac4{x^2}left(e^x-1-dfrac x1right)+dfrac6{x^3}left(e^x-1-dfrac x1-dfrac{x^2}{2!}right)$$
$$=e^xleft(dfrac1x-dfrac4{x^2}+dfrac6{x^3}right)+dfrac1xleft(-1+4-3right)+dfrac1{x^2}left(4+6right)-dfrac6{x^3}$$
Here $x=3$
edited 12 hours ago
answered 14 hours ago
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
add a comment |
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
$begingroup$
See also : math.stackexchange.com/questions/2638073/…
$endgroup$
– lab bhattacharjee
33 mins ago
add a comment |