Delavaria

Multi tool use
Delavaria

|

|
Vexillum Delavariae
|
Signum Delavariae
|
|
Agnomen: Civitas Prima (Anglice: First State)
|
Sententia: Libertas et independentia (Anglice: Liberty and Independence)
|

|
Civitates aliae
|
Caput |
Dubris
|
Urbs maxima |
Vilmingtonia
|
Linguae publicae
|
nulla
|
Superficies
|
Ordo 49
|
- Tota |
6,452 km²
|
- Terrae |
5,068 km²
|
- Aquae |
1,387 km²
|
- % aqua |
21.5
|
- Latitudo |
137 km
|
- Longitudo |
18 km
|
- Locus (Sept-Medit) |
38°27' Sept. ad 39°50' Sept.
|
- Locus (Occ-Orient) |
75°2' Occ. ad 75°47' Occ.
|
Numerus civium
|
Ordo 45
|
- Total ([[ ]]) |
907'135 (2011)
|
- Densitas civium
|
179/km² (7)
|
Altitudo |
|
- Altissima
|
137 metra
|
- Media |
18 metra
|
- Humillima |
0 metra
|
Accessio
|
Die 1 Decembris 1787 (1)
|
Gubernator |
Ioannes Carney
|
Senatores C.F.A.
|
Zona horaria
|
UTC-5/-4
|
ISO 3166-2 |
US-DE
|
Delavaria est civitas Civitatum Foederatarum Americae, prima quae Constitutionem (anno 1787) ascivit. Hodie est secunda a minima civitas inter Civitates Foederatas.
Urbes |
Dober (caput)
- Vilmingtonia
Porta: Civitates Foederatae Americae
|
Civitates Civitatum Foederatarum
|
|
Alabama · Alasca · Arizona · Arcansia · California · Carolina Meridiana · Carolina Septentrionalis · Cenomannica · Coloratum · Connecticuta · Dacota Meridiana · Dacota Septentrionalis · Delavaria · Florida · Georgia · Havaii · Idahum · Illinoesia · Indiana · Iova · Kansia · Kentukia · Ludoviciana · Massachusetta · Michigania · Minnesota · Mississippia · Missuria · Mons Viridis · Montana · Nebrasca · Nivata · Nova Caesarea · Nova Hantonia · Novum Eboracum · Novum Mexicum · Oclahoma · Ohium · Oregonia · Pennsilvania · Rhodensis Insula · Tennesia · Terra Mariae · Texia · Uta · Vasintonia · Virginia · Virginia Occidentalis · Visconsinia · Vyomina · · Territorium Columbianum (urbs Vasingtonia)Opus geopoliticum • Porta Civitatum Foederatarum
Capsae cognatae: Territoria Civitatum Foederatarum
|
|
4EjwfTb,Gvez9pzxrGmjG9AcJPE7ebST7tp,iffg6wcPvdoimqE5l,Z S,D4yPoRVzN y,mOlQ,EMVDuOAJ,E7AM Bk9R204Xb9fGa9nT5m3
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...