Alphonsus Weische

Multi tool use
Alphonsus Weische sive Alfonsus Weische (natus Alfons Weische Menedinnae[1] die 17 mensis Ianuarii anno 1932) est professor philologiae emeritus. Postquam philosophiam, theologiam, philologiam didicit, anno 1960 Monasterii Guestphalorum? de Ciceronis philosophia disseruit.[2] Professor factus ex anno 1970 praecipue vim verborum Latinorum perscrutabatur. Latinitatem vivam cum vehementer coleret, fuit inter eos, qui Latinitati Vivae Provehendae Associationem anno 1987 condiderunt.
Iussus ab Ordine Philosophorum Universitatis Monasteriensis Latina diplomata per tria decennia conscripsit, cum homines de litteris bene meriti titulo 'Doctoris honoris causa' ornabantur. Inter eos erant Ioannes Claudius Juncker, Wolfgangus Thierse, et Gerd Mak. Etiam composuit multa carmina Latina variis metris utens, quibus laudavit vitam, animum, mores complurium hominum, qui in studiis classicis excellunt. Praeterea Latine egit de diversis rebus opusculis publice factis.
Eius scripta |
- 1999: Quam varie et diverse Empedocles et Lucretius praepositionibus usi sint, parva de linguis comparandis diputatio. in: Donum Natalicium Nicolao Sallmann sexagesimum quintum annum agenti a fautoribus Linguae Latinae vivae oblatum. Edidit Jürgen Blänsdorf. Würzburg, p. 11 - 20
- 2003: Cur exercitationes Latinas diligam, in: Altera Ratio
- 2005: Angelus Camillus Decembrio quomodo inter varias observationes demonstret substantiva officio poetico epithetorum fungi posse, in: Alandae
- 2006: Ernestus Renan, in: Navigare necesse est. Miscellania Gaio Licoppe dicata. Edidit Francisca Licoppe-Deraedt. Bruxelles, p.205 - 209
- 2011: Carmen gratulatorium: Guy Licoppe octo decies per annos, in: Melissa, n° 163, Bruxellis, 2011, p. 16.
Notae |
↑ J. G. Th. Graesse, Orbis Latinus (Dresdae: Schönfeld, 1861; 1909. Brunsvici, 1972, 3 voll.) 1 2 3
↑ Weische, Alfons: Cicero und die Neue Akademie: Untersuchungen zur Entstehung u. Geschichte d. antiken Skeptizismus, Monasterii 1961, ISBN (secundae impressionis) 3-402-05392-6.
Nexus externi |
- Latinitati Vivae Provehendae Associationis pagina domestica
- De libro in honorem Alphonsi Weische
nuHd4ZJe 4S81jfC1llSmDvJS5s1G
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...