Sēquăna (-ae, m.)[1] (Francogallice Seine) est flumen in Francia.
Index
1Historia
1.1Sequanae notiores pictores
2Urbes ad Sequanam
3Flumina quae in Sequanam influunt
4Notae
5Nexus externi
Historia |
Caesaris tempore, Gallos a Belgis Matrona et Sequana dividebant [2]. Lexoviique et Caleti et Aulerci et Veliocassi et Parisii et Senones Sequanae ripas incolebant. Eorum oppida erant et sunt Lutetia, Vellaunodunum, Metiosedum, Agedincum.
Acribus certaminibus, hac in regione proeliatus est contra Camulogenum et Gallorum exercitum suum Fabius, Caesaris legatus.
Sequanae notiores pictores |
Richard Parkes Bonnington, Iosephus Mallord Gulielmus Turner, Camillus Corot, Eugène Isabey, Constant Troyon, Carolus Franciscus Daubigny, Eugenius Boudin, Johan Barthold Jongkind, Claude Monet, Frédéric Bazille, Vuillard, Vallotton, Raoul Dufy, Emile Othon Friesz, Albertus Marquet, Emilio Grau Sala, Gaston Sébire, Mauritius Boitel, Ioannes Carzou.
Urbes ad Sequanam |
Castellio ad Sequanam
Barium ad Sequanam
Rumiliacum ad Sequanam
Novigentum ad Sequanam
Trecae
Monasteriolum Senonum
Melodunum
Carentonium
Lutetia
Bononia ad Sequanam
Separa
Sanctus Clodoaldus
Curbavia
Noviliacum ad Sequanam
Clipiacum
Argentolium
Burgivallis
Sanctus Germanus in Laya
Pinciacum
Vernonum
Andeliacum
Elbovium
Rothomagus
Flumina quae in Sequanam influunt |
Alba
Icauna
Matrona
Esia
Exona
Urbia
Epta
Ebura
Bevera
Notae |
↑Iohannes Iacobus Hofmannus, Lexicon Universale (1698), lemma 'Sequana'
↑De Bello Gallico, Julius Caesar
Nexus externi |
Situs geographici et historici: • OpenStreetMap • GeoNames • Digital Atlas of the Roman Empire
Vicimedia Communia plura habent quae ad Sequanam spectant.
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...