Lingua Aramaica

Multi tool use
Lingua Aramaica ארמית Arāmît, ܐܪܡܝܐ Armāyâ
|
Taxinomia:
|
lingua e divisione Semitica familiae Afrasiaticae
|
Status:
|
lingua exstincta; parens linguarum Aramaicarum mediaevalium et hodiernarum
|
Sigla:
|
1 —, 2 —, 3 arc
|
Usus
|
Aevum:
|
millennium I a.C.n.
|
Situs:
|
lingua in imperio Persarum officialis et postea sub imperiis Seleucidarum Parthorumque adhibita in varietatibus recentioribus etiamnunc viva
|
Litterae:
|
Litterae Aramaicae
|
Scriptura:
|
Abecedarium Aramaicum
|
Familiae linguisticae coloribus Vicipaedicis pictae
|
Lingua Aramaica[1][2] seu Aramaea[3] (sed et Chaldaea[4] vel Chaldaica[3] sive Syrochaldaica[2] dicta) est lingua Semitica cum historia annorum trium milium. Aramaica lingua aliquarum partium Bibliorum est, item lingua procurationis regnorum et lingua divina adorationis fuit. Praeterea lingua vernacula Iesu fuisse videtur (vide Marcum 5:41) ac lingua Talmud. Etiam hodie multae parvae communitates Aramaica utuntur lingua prima.
Lingua Aramaica ad familiam Afro-Asiaticam pertinet.
Nexus interni
- lingua Samaritana
- lingua Syriaca
Notae |
↑ Ephemeris 2004
↑ 2.02.1 Lamy, Introd. in Sacr. Script. Pars 2 (ed. 4a, Mechliniae, 1887, p. 215 Indian Christianity apud www.indianchristianity.com
↑ 3.03.1 Conradus Gesnerus, Mithridates: de differentiis linguarum (1555) textus f. 9v; Athanasius Kircherus, Turris Babel, sive Archontologia (Amstelodami: Jansson-Waesberge, 1679) textus pp. 193-201
↑ Johann Dinckel, De lingua chaldaea et syriaca
Bibliographia |
- Gernot Windfuhr, "Iran, vii. Non-Iranian languages (10). Aramaic" (2006) in Encyclopaedia Iranica Online
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad linguam vel ad linguisticam spectat. Amplifica, si potes!
|
4JR6uCWPq GXf,sEGIvloYq9wwE53H42MfX0y7W5blxp,ULd2rWv,t,aw89 QYDXbuXczMsegi84pqs G9k0x9,ZabP zerR,2hPiRJD ig
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...