Conductor

Multi tool use
- Haec pagina de conductoris officio explicat. Si conductorem physicalem quaeris, vide Conductrum. Si ducem orchestrae quaeris, vide Concentus magister.
Unam legis e paginis de
oeconomia
disserentibus
Disciplinae
- Oeconomia comparativa
- Micro-oeconomia
- Macro-oeconomia
- Oeconomia politica
Praxeologia
- Catallactica
- Historia
- Sociologia
- Scientia belli
- Civilitas
- Ars politica
- Psychologia
Principia
- Laboris divisio
- Lex oblati et quaesiti
- Lex Sayi
- Pecunia
- Valor oeconomicus
Scholae
- Austriaca
- Classica
- Placita Keynesiana
- Placita Marxiana
- Iosephus Schumpeter
- Sicagensis
Theoria impossibilitatis - Kennethus Arrow et Amartya Sen
Instituta
- Aerarium Monetarium Internationale
- Argentaria
- Bursa
- Conductor
- Collegium
- Collegium opificum
- Mercatus
- Moneta
- Societas
- Societas cooperativa
Systemata
- Capitalismus
- Communismus
- Mercantilismus
- Mercatus mixtus
- Mercatus liber
- Socialismus
Prodigia
- Circumitus oeconomicus
- Lucrum
- Usura
- Hyperinflatio
- Inopia operarum
- Monopolium
- Recessio oeconomica
Consuetudines regiminum
- Inflatio
- Subventus collegiorum
Campi oeconomici
- Campus primarius
- Campus secundarius
- Campus tertiarius
Conductor, conductor operis,[1]conductrix operis,[1]redemptor,[2][1]redemptrix,[1]ergolabus[2][1] (-i, m)[1], vel susceptor operum,[3] in oeconomia est homo qui operarios vel potius laborem operariorum vel operam faciendam conducit.
Oeconomistae, sicut Ioannes Baptista Say et Iosephus Schumpeter valorem conductoris aestimaverunt.
Notae |
↑ 1.01.11.21.31.41.5 Ebbe Vilborg, Norstedts svensk-latinska ordbok, editio secunda, 2009.
↑ 2.02.1 Archimedes Project .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice, Latine)
↑ Anyakönyvvezetők szótára 1923
(Hungarice, Slovacice, Germanice, Latine).
Nexus externi |
- Populorum progressio: "operis conductor"
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad oeconomiam spectat. Amplifica, si potes!
|
ZXVmKnYXmAlFHh kLTJU,ZHVBPK0omaFk2viO
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...