Unio socialis Christiana Bavariensis

Multi tool use
Unio socialis Christiana Bavariensis (Germanice: Christlich Soziale Union in Bayern (CSU)) est nomen factionis in Bavaria, quae in Germania cum Christiana Democratica Unio Germaniae foederata est. Nunc praeses huius factionis est Marcus Söder.
Praesides unionis |
Iosephus Müller 1946-1949
Ioannes Ehard 1949-1955
Ioannes Seidel 1955-1961
Franciscus Iosephus Strauß 1961-1988
Theodorus Waigel 1988-1999
Edmundus Stoiber 1999-2007
Ervinus Huber 2007-2008
Horatius Seehofer 2008 - 2019
Marcus Söder 2019 -
Lege etiam |
- Haneke, Burkhard: Geschichte einer Volkspartei., 50 Jahre CSU 1945–1995, Grünwald anno 1995.
- Salbaum, Michael: Die Geschichte der CSU, Augustae Vindelicorum anno 1998.
Nexus externi |
Pagina officialis Christianae Socialis Unionis .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Theodisce)
Historia Christianae Socialis Unionis
Ductores factionum politicarum Germani
|
|
Angela Merkel (Unio democratica Christiana) • Horatius Seehofer (Unio socialis Christiana) • Martinus Schulz (Factio democratica socialis) • Christianus Lindner (Factio democratica liberalis) • Catharina Kipping et Bernhardus Riexinger (Sinistra) • Annalena Baerbock et Robertus Habeck (Foedus 90/Virides) • Carsten Sawosch (Factio piratica) • Alexander Gauland et Georgius Meuthen (Alternativa pro Germania)Opus geopoliticum • Porta Unionis Europaeae
Capsae cognatae: Formula:Praesides Christianae Democraticae Unionis Germaniae
|
|
pG1jfOHNCvUK9acoHVmn,6O4QC4BOJ2yS kg2 FyQ8jwNptf6z
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...