Corinthus

Multi tool use
Corinthus
Nomen vernaculare
|
Κόρινθος
|
IPA
|
[ˈkorinθos]
|
Regio
|
|
Unitas regionalis
|
|
Demus
|
Κόρινθος
|
Numerus incolarum
|
30 176 (census anni 2011)
|
Latitudo
|
37° 56' sept.
|
Longitudo
|
22° 56' orient.
|
Cursuale
|
20 131, 20 132
|
Situs Corinthi in Graecia
|
|

Templum Apollinis Corinthi situm.
Corinthus[1] (-i, f.) (Graece Κόρινθος) est urbs Graeciae, quae ad Isthmum inter Paeninsulam Peloponnesum et mediam Graeciam iacet. Locus fuit habitationis humanae aevo neolithico (ab anno c. 6 500 a.C.n.). Aevo classico Corinthus fuit urbs florens et praeclara materque coloniarum notissimarum. Anno 146 a.C.n., Corinthus a Romanis, Lucio Mummio duce, deleta est, sed colonia Romana ibidem anno 44 a.C.n. condita est.
Medea, drama ab Euripide scriptum, Corinthi sita est.
Paulus Apostolus nonnullas epistulas ad Corinthios, in Bibliis Sacris servatas, scripsit.
Corinthus est sedes episcopalis titularis Ecclesiae Catholicae Romanae.
Bibliographia |
- Harold North Fowler, Richard Stillwell et al., edd., Corinth. Princetoniae: American School of Classical Studies at Athens, 1929-
- Charles K. Williams II, Nancy Bookidis, edd., Corinth: the centenary, 1896-1996. Princetoniae: American School of Classical Studies at Athens, 2003. (Corinth, vol. 20) JSTOR
Nexus interni
- Acrocorinthus
- Isthmus Corinthius
- Canalis Corinthius
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
Notae |
↑ A. Chiusole, Il mondo antico, moderno, e novissimo, ovvero Breve trattato (Venetiarum: G. B. Recurti, 1749)
T0fK8SG75dn3Zrb
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...