Mbabane

Multi tool use

Mbabane
Res apud Vicidata repertae:
Civitas:
SwaziaNumerus incolarum:
94 874Zona horaria:
UTC+2Situs interretialis
Geographia
Superficies: 150±1 chiliometrum quadratum
Coniunctiones urbium
Urbes gemellae: Arx Vorthensis, Taipeia, Mersing, Augusta Treverorum

Collocatio Mbabane in Suazia
Mbabane est urbs circa 30'000 incolarum (2003) et caput Suaziae.
Historia |
Haec urbs anno 1902 a Britannicis condita est et iam insequenti anno caput protectorati facta est.
Nexus externi |
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad urbem spectat. Amplifica, si potes!
|
Urbes Africae capitales
Ordine alphabetico enumeratae: Abugia • Accra • Algeria • Antananarivo • Asmara • Bamako • Bangui • Banjul • Bissau • Brazzapolis • Bujumbura • Cairus • Conakry • Dakar • Dodoma • Gaborone • Gibuti • Harare • Iuba • Kampala • Khartum • Kigali • Kinshasa • urbs Libera • Liberopolis • Lilongwe • Lome • Luanda • Lusaka • Malabo • Maputo • Maseru • Mbabane • Mogadiscio • Monrovia • Moroni • Nairobia • Ndjamena • Neanthopolis • Niamey • Nouakchott • Portus Ludovici • Portus Novus • Praetoria • Praia • Rabatum • Tripolis • Tunes • Uagadugu • Sanctus Thomas • Victoria • Windhoek • Yamussukro • Yaunde
Sub civitatum nominibus annexae: Aegyptus • Aethiopia • Africa Australis • Africa Media • Algerium • Angolia • Beninum • Botswana • Burkina Faso • Burundia • Cammarunia • Caput Viride • Comorianae insulae • res publica Congensis • res publica democratica Congensis • Erythraea • Gabon • Gambia • Gana • Gibutum • Guinea • Guinea Aequinoctialis • Guinea Bissaviensis • Kenia • Lesothum • Liberia • Libya • Litus Eburneum • Madagascaria • Malavia • Malia • Marocum • Mauritania • Mauritia • Mons Leoninus • Mozambicum • Namibia • Nigeria • Nigritania • Ruanda • Sanctus Thomas et Princeps • Seisellenses insulae • Senegalia • Somalia • Sudania • Sudania Australis • Swazia • Tanzania • Togum • Tunesia • Tzadia • Uganda • Zambia • Zimbabua
Opus geopoliticum • Urbes orbis terrarum capitales
Capsae cognatae: Urbes Africae maximae • Urbes Americae Australis capitales • Urbes Americae Septentrionalis capitales • Urbes Asiae capitales • Urbes Europae capitales • Urbes Oceaniae capitales
m,BnPql2Bzuvy76a bjJZbbCIpNuGJjF VPDbEW o,fVk gpU,WHTkJ hewxrRm,o8o
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...