Apparitio

Multi tool use
|
Suadetur ut haec commentatio in unam cum Campus tertiarius contribuatur. De quo sententiam tuam, rogamus, profer in pagina disputationis.
It is proposed to merge this page with Campus tertiarius. Please give your opinion on the talk page.
|

Ministra cauponae mandatum clientis accipit.
Apparitio est negotiatio ubi opera vel exsecutio cara clientibus pro pecunia datur.
Apparitio vulgo ut tertius sector industriae vel oeconomiae numeratur. Alii duo sectores sunt mercium extractio (primus sector), quae agricultura, metallum, et piscationem complectit, et rerum fabricatio (alter sector). Interdum sunt qui informationis distributio in quarto sectore numerant, sed saepius inter apparitiones professionales numerantur.
Apparationes vulgo dividuntur in:
Apparitio civilis, ubi e.g. vigil vel siphonarius incolas protegit
Apparationes professionales, sicut apparitio dentaria, medica, didactica, legalis
Apparationes fiscales, sicut apparatio vectigalica, argentaria, hypothecalis, cambia monetaria, cautiones
Refectio, ubi fabri res fracta resarciunt aut domum meliorant vel expandunt
Mercatura, ubi rerum venditio facilitatur, per rerum ostentationem, pretiorum accomodationem, praeconia televisifica.
Apparitio culinaria, ubi coqui cibos coquunt, quos ministi clientibus cauponae anteponunt
Ministratio domestica, sicut domus pugatio, vestium lavatio, calator
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad oeconomiam spectat. Amplifica, si potes!
|
m8PGn4Q FYFz6vG4TVpfokhEp3vF,9vh63T9R4rQwN4g W3snKqr1muMIJd89ZN4stVwH
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...